Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Expert Rev Clin Immunol ; 18(10): 1023-1032, 2022 10.
Article in English | MEDLINE | ID: covidwho-2269795

ABSTRACT

INTRODUCTION: Generalized pustular psoriasis (GPP) is a rare, severe, immune-mediated and potentially life-threatening skin disease. The rarity, differential diagnoses, relapsing nature, skin and systemic symptoms, complications and limited therapeutic approaches for this disease pose a clinical and psychological burden on patients and their families. AREAS COVERED: Epidemiologic data of GPP in Chinese patients, including the disease prevalence and age of disease onset, as well as epidemiologic data in global populations were reviewed. Multiple proinflammatory cytokines are involved in the disease development and clinical presentation of GPP and the interleukin (IL)-36-mediated signaling pathway play a central role. Furthermore, loss-of-function mutations in IL-36 RN (encoding the IL-36 receptor antagonist) are associated with GPP, suggesting a potential drug target for developing a disease-specific therapeutic approach. Biologic agents, including IL-36 R targeted agents, are promising treatment options, especially as existing conventional therapies are inadequate. Chinese guidelines for the diagnosis and treatment of psoriasis recommend systemic and topical treatment options for GPP and disease complications, as well as for GPP during pregnancy and juvenile GPP. EXPERT OPINION: This review summarizes the epidemiology, pathogenesis, clinical characteristics, disease burden and management of patients with GPP in China, and also describes future treatment targets and related clinical trials.


Subject(s)
Primary Immunodeficiency Diseases , Psoriasis , Acute Disease , Chronic Disease , Cost of Illness , Cytokines/genetics , Female , Humans , Interleukins/genetics , Pregnancy , Psoriasis/diagnosis , Psoriasis/epidemiology , Psoriasis/genetics , Skin/pathology
2.
Br J Biomed Sci ; 80: 11044, 2023.
Article in English | MEDLINE | ID: covidwho-2230332

ABSTRACT

Background: Single nucleotide polymorphisms provide information on individuals' potential reactions to environmental factors, infections, diseases, as well as various therapies. A study on SNPs that influence SARS-CoV-2 susceptibility and severity may provide a predictive tool for COVID-19 outcomes and improve the customized coronavirus treatment. Aim: To evaluate the role of human leukocyte antigens DP/DQ and IFNλ4 polymorphisms on COVID-19 outcomes among Egyptian patients. Participants and Methods: The study involved 80 patients with severe COVID-19, 80 patients with mild COVID-19, and 80 non-infected healthy volunteers. Genotyping and allelic discrimination of HLA-DPrs3077 (G/A), HLA-DQrs7453920 (A/G), and IFNλ4 rs73555604 (C/T) SNPs were performed using real-time PCR. Results: Ages were 47.9 ± 8, 44.1 ± 12.1, and 45.8 ± 10 years in severe, mild and non-infected persons. There was a statistically significant association between severe COVID-19 and male gender (p = 0.002). A statistically significant increase in the frequency of HLA-DPrs3077G, HLA-DQrs7453920A, and IFNλ4rs73555604C alleles among severe COVID-19 patients when compared with other groups (p < 0.001). Coexistence of these alleles in the same individual increases the susceptibility to severe COVID-19 by many folds (p < 0.001). Univariate and multivariate logistic regression analysis for the studied parameters showed that old age, male gender, non-vaccination, HLA-DQ rs7453920AG+AA, HLA-DPrs3077GA+GG, and IFNλ4rs73555604CT+CC genotypes are independent risk factors for severe COVID-19 among Egyptian patients. Conclusion: HLA-DQ rs7453920A, HLA-DPrs3077G, and IFNλ4rs73555604C alleles could be used as markers of COVID-19 severity.


Subject(s)
COVID-19 , HLA-DP Antigens , HLA-DQ Antigens , Interleukins , Humans , Male , Alleles , Case-Control Studies , COVID-19/genetics , Genetic Predisposition to Disease , Genotype , HLA-DP Antigens/genetics , HLA-DQ Antigens/genetics , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2 , Interleukins/genetics
3.
Genes (Basel) ; 14(1)2022 12 22.
Article in English | MEDLINE | ID: covidwho-2229491

ABSTRACT

Although advanced age, male sex, and some comorbidities impact the clinical course of COVID-19, these factors only partially explain the inter-individual variability in disease severity. Some studies have shown that genetic polymorphisms contribute to COVID-19 severity; however, the results are inconclusive. Thus, we investigated the association between polymorphisms in ACE1, ACE2, DPP9, IFIH1, IFNAR2, IFNL4, TLR3, TMPRSS2, and TYK2 and the clinical course of COVID-19. A total of 694 patients with COVID-19 were categorized as: (1) ward inpatients (moderate symptoms) or patients admitted at the intensive care unit (ICU; severe symptoms); and (2) survivors or non-survivors. In females, the rs1990760/IFIH1 T/T genotype was associated with risk of ICU admission and death. Moreover, the rs1799752/ACE1 Ins and rs12329760/TMPRSS2 T alleles were associated with risk of ICU admission. In non-white patients, the rs2236757/IFNAR2 A/A genotype was associated with risk of ICU admission, while the rs1799752/ACE1 Ins/Ins genotype, rs2236757/IFNAR2 A/A genotype, and rs12329760/TMPRSS2 T allele were associated with risk of death. Moreover, some of the analyzed polymorphisms interact in the risk of worse COVID-19 outcomes. In conclusion, this study shows an association of rs1799752/ACE1, rs1990760/IFIH1, rs2236757/IFNAR2, rs12329760/TMPRSS2, and rs2304256/TYK2 polymorphisms with worse COVID-19 outcomes, especially among female and non-white patients.


Subject(s)
COVID-19 , Humans , Male , Female , COVID-19/genetics , Interferon-Induced Helicase, IFIH1/genetics , Polymorphism, Genetic , Genotype , Disease Progression , TYK2 Kinase/genetics , Receptor, Interferon alpha-beta/genetics , Serine Endopeptidases/genetics , Interleukins/genetics
4.
J Med Virol ; 95(2): e28506, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173249

ABSTRACT

Coronavirus Disease 2019 (COVID-19) has been ranked among the most fatal infectious diseases worldwide, with host's immune response significantly affecting the prognosis. With an aim to timely predict the most likely outcome of SARS-CoV-2 infection, we investigated the association of IFNL3 and IFNL4 polymorphisms, as well as other potentially relevant factors, with the COVID-19 mortality. This prospective observational case-control study involved 178 COVID-19 patients, hospitalized at Corona Center or Clinic for Infectious Diseases of University Clinical Centre Kragujevac, Serbia, followed up until hospital discharge or in-hospital death. Demographic and clinical data on all participants were retrieved from the electronic medical records, and TaqMan assays were employed in genotyping for IFNL3 and IFNL4 single nucleotide polymorphisms (SNPs), namely rs12980275, rs8099917, rs12979860, and rs368234815. 21.9% and 65.0% of hospitalized and critically ill COVID-19 patients, respectively, died in-hospital. Multivariable logistic regression analysis revealed increased Charlson Comorbidity Index (CCI), N/L, and lactate dehydrogenase (LDH) level to be associated with an increased likelihood of a lethal outcome. Similarly, females and the carriers of at least one variant allele of IFNL3 rs8099917 were almost 36-fold more likely not to survive SARS-CoV-2 infection. On the other hand, the presence of at least one ancestral allele of IFNL4 rs368234815 decreased more than 15-fold the likelihood of mortality from COVID-19. Our results suggest that, in addition to LDH level, N/L ratio, and CCI, IFNL4 rs368234815 and IFNL3 rs8099917 polymorphisms, but also patients' gender, significantly affect the outcome of COVID-19.


Subject(s)
COVID-19 , Interleukins , Female , Humans , Case-Control Studies , Genotype , Hospital Mortality , Interferons , Interleukins/genetics , Polymorphism, Single Nucleotide , SARS-CoV-2
5.
Immunobiology ; 227(6): 152301, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2119151

ABSTRACT

Coronavirus disease-19 (COVID-19) has recently emerged as a respiratory infection with a significant impact on health and society. The pathogenesis is primarily attributed to a dysregulation of cytokines, especially those with pro-inflammatory and anti-inflammatory effects. Interleukin-38 (IL-38) is a recently identified anti-inflammatory cytokine with a proposed involvement in mediating COVID-19 pathogenesis, while the association between IL38 gene variants and disease susceptibility has not been explored. Therefore, a pilot study was designed to evaluate the association of three gene variants in the promoter region of IL38 gene (rs7599662 T/A/C/G, rs28992497 T/C and rs28992498 C/A/T) with COVID-19 risk. DNA sequencing was performed to identify these variants. The study included 148 Iraqi patients with COVID-19 and 113 healthy controls (HC). Only rs7599662 showed a significant negative association with susceptibility to COVID-19. The mutant T allele was presented at a significantly lower frequency in patients compared to HC. Analysis of recessive, dominant and codominant models demonstrated that rs7599662 TT genotype frequency was significantly lower in patients than in HC. In terms of haplotypes (in order: rs7599662, rs28992497 and rs28992498), frequency of CTC haplotype was significantly increased in patients compared to HC, while TTC haplotype showed significantly lower frequency in patients. The three SNPs influenced serum IL-38 levels and homozygous genotypes of mutant alleles were associated with elevated levels. In conclusion, this study indicated that IL38 gene in terms of promoter variants and haplotypes may have important implications for COVID-19 risk.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/genetics , Genotype , Pilot Projects , Iraq , Case-Control Studies , Promoter Regions, Genetic/genetics , Polymorphism, Single Nucleotide , Alleles , Haplotypes , Cytokines/genetics , Interleukins/genetics , Genetic Predisposition to Disease , Gene Frequency
6.
Sci Rep ; 12(1): 16019, 2022 09 26.
Article in English | MEDLINE | ID: covidwho-2042336

ABSTRACT

Cytokines are major players in orchestrating inflammation, disease pathogenesis and severity during COVID-19 disease. However, the role of IL-19 in COVID-19 pathogenesis remains elusive. Herein, through the analysis of transcriptomic datasets of SARS-CoV-2 infected lung cells, nasopharyngeal swabs, and lung autopsies of COVID-19 patients, we report that expression levels of IL-19 and its receptor, IL-20R2, were upregulated following SARS-CoV-2 infection. Of 202 adult COVID-19 patients, IL-19 protein level was significantly higher in blood and saliva of asymptomatic patients compared to healthy controls when adjusted for patients' demographics (P < 0.001). Interestingly, high saliva IL-19 level was also associated with COVID-19 severity (P < 0.0001), need for mechanical ventilation (P = 0.002), and/or death (P = 0.010) within 29 days of admission, after adjusting for patients' demographics, diabetes mellitus comorbidity, and COVID-19 serum markers of severity such as D-dimer, C-reactive protein, and ferritin. Moreover, patients who received interferon beta during their hospital stay had lower plasma IL-19 concentrations (24 pg mL-1) than those who received tocilizumab (39.2 pg mL-1) or corticosteroids (42.5 pg mL-1). Our findings indicate that high saliva IL-19 level was associated with COVID-19 infectivity and disease severity.


Subject(s)
COVID-19 , Adult , Biomarkers , C-Reactive Protein , Cytokines , Ferritins , Humans , Interferon-beta , Interleukins/genetics , SARS-CoV-2 , Saliva , Up-Regulation
8.
J Interferon Cytokine Res ; 41(11): 407-414, 2021 11.
Article in English | MEDLINE | ID: covidwho-1758604

ABSTRACT

Genetic polymorphisms at the IFNL4 loci are known to influence the clinical outcome of several different infectious diseases. Best described is the association between the IFNL4 genotype and hepatitis C virus clearance. However, an influence of the IFNL4 genotype on the adaptive immune system was suggested by several studies but never investigated in humans. In this cross-sectional study, we have genotyped 201 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive participants for 3 IFNL4 polymorphisms (rs368234815, rs12979860, and rs117648444) and stratified them according to the IFNλ4 activity. Based on this stratification, we investigated the association between the IFNL4 genotype and the antibody as well as the CD8+ T cell response in the acute phase of the SARS-CoV-2 infection. We observed no differences in the genotype distribution compared with a Danish reference cohort or the 1,000 Genome Project, and we were not able to link the IFNL4 genotype to changes in either the antibody or CD8+ T cell responses of these patients.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Interleukins/immunology , SARS-CoV-2/immunology , Adaptive Immunity/genetics , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , Cohort Studies , Cross-Sectional Studies , Female , Genotype , Humans , Interleukins/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/immunology , SARS-CoV-2/genetics , Young Adult
9.
Virol J ; 18(1): 221, 2021 11 14.
Article in English | MEDLINE | ID: covidwho-1518281

ABSTRACT

BACKGROUND: The recent pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has elevated several clinical and scientific questions. These include how host genetic factors influence the pathogenesis and disease susceptibility. Therefore, the aim of this study was to evaluate the impact of interferon lambda 3 and 4 (IFNL3/4) gene polymorphisms and clinical parameters on the resistance and susceptibility to coronavirus disease 2019 (COVID-19) infection. METHODS: A total of 750 SARS-CoV-2 positive patients (375 survivors and 375 nonsurvivors) were included in this study. All single-nucleotide polymorphisms (SNPs) on IFNL3 (rs12979860, rs8099917, and rs12980275) and IFNL4 rs368234815 were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS: In this study, a higher viral load (low PCR Ct value) was shown in nonsurvivor patients. In survivor patients, the frequency of the favorable genotypes of IFNL3/4 SNPs (rs12979860 CC, rs12980275 AA, rs8099917 TT, and rs368234815 TT/TT) was significantly higher than in nonsurvivor patients. Multivariate logistic regression analysis has shown that a higher low-density lipoprotein (LDL), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and PCR Ct value, and lower 25-hydroxyvitamin D, and also IFNL3 rs12979860 TT, IFNL3 rs8099917 GG, IFNL3 rs12980275 GG, and IFNL4 rs368234815 ∆G/∆G genotypes were associated with the severity of COVID-19 infection. CONCLUSIONS: The results of this study proved that the severity of COVID-19 infection was associated with clinical parameters and unfavorable genotypes of IFNL3/IFNL4 SNPs. Further studies in different parts of the world are needed to show the relationship between severity of COVID-19 infection and host genetic factors.


Subject(s)
COVID-19/diagnosis , Interferons/genetics , Interleukins/genetics , SARS-CoV-2/isolation & purification , Adult , Aged , Antiviral Agents/therapeutic use , COVID-19/epidemiology , Disease Susceptibility , Female , Genotype , Humans , Iran/epidemiology , Male , Middle Aged , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Severity of Illness Index
10.
Sci Rep ; 11(1): 21185, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1493214

ABSTRACT

Interferon lambda 4 (IFNλ4) has shown antiviral activity against RNA viruses, including some coronaviruses. Besides, genetic variants of IFNL4 can be predictive of the clearance of RNA viruses. However, little is known about the effect of these genetic variants on SARS-CoV-2 infection. In this study, we investigated whether there was a relationship of the rs12979860 polymorphism of IFNL4 with COVID-19. We found that the T allele of rs12979860 was overexpressed in COVID-19 patients with regard to the general population without this disease (36.16% vs. 26.40%, p = 6.4 × 10-4; OR 0.633 C vs T; 95% CI 0.487, 0.824), suggesting that this allele could be a risk factor for COVID-19. Accordingly, the CC genotype was significantly lower in COVID-19 patients compared to controls (37.85% vs. 55.51%, p = 8 × 10-5; OR 0.488; 95% CI 0.342, 0.698). These results were not affected by sex, age, and disease severity in patients with COVID-19. Our findings suggest that, like other infectious diseases caused by RNA viruses, genetic variants of IFNL4 can predispose to COVID-19. Confirmation of our results may contribute to better understanding the mechanisms of this disease.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Interleukins/genetics , Polymorphism, Single Nucleotide , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Pandemics , Risk Factors , Spain/epidemiology
11.
J Med Virol ; 93(10): 5853-5863, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1432418

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) infection may rely on a potential genetic background for the variations in the inflammatory response. We aimed to investigate the possible correlation between polymorphisms in the IL-6 gene at rs1800796/rs1800795, in IL-6R at rs2228145, in IL-10 at rs1800896 and rs1800871, in IL-17 at rs2275913 and rs763780 loci, and COVID-19 prevalence and mortality rates among populations of 23 countries. METHODS: We searched the literature for polymorphisms in China, Japan, India, Spain, Mexico, Sweden, Turkey, Brazil, Russia, Poland, Italy, South Africa, Netherlands, Greece, Germany, UK, Iran, Finland, Czechia, Tunisia, Norway, Egypt, Croatia. We recorded the prevalence and mortality rates (per million) caused by the Coronavirus infection recorded on 7th September 2020 and 6th December 2020. RESULTS: There was a significant positive correlation between the frequency of AG genotype of rs1800896 and prevalence recorded on 6th December 2020 (r: 0.53, r2 : 0.28, p < .05). There was a significant negative correlation between the mortality rates recorded on 7th September, and the AG genotype of rs2275913 (r: -0.51, r2 : 0.26, p < .05). There was a significant positive correlation between the prevalence recorded on 6th December, and TT genotype at rs763780 (r: 0.65, r2 :0.42, p < .05) while a negative correlation between prevalence and TC genotype at rs763780 (r: -0.66, r2 : 0.43, p < .05). Also, a significant negative correlation was found between mortality rates recorded on 6th December 2020 and CC genotype at rs763780 (r: -0.56, r2 : 0.31, p < .05). CONCLUSION: The variations in prevalence of COVID-19 and its mortality rates among countries may be explained by the polymorphisms at rs1800896 in IL-10, rs2275913 in IL-17A, and rs763780 loci in the IL-17F gene.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Interleukins/genetics , COVID-19/mortality , Genetic Association Studies , Genotype , Humans , Interleukin-10/genetics , Interleukin-17/genetics , Interleukin-6/genetics , Polymorphism, Single Nucleotide , Prevalence , Receptors, Interleukin-6/genetics , SARS-CoV-2
13.
Molecules ; 25(12)2020 Jun 26.
Article in English | MEDLINE | ID: covidwho-1389454

ABSTRACT

Viruses can be spread from one person to another; therefore, they may cause disorders in many people, sometimes leading to epidemics and even pandemics. New, previously unstudied viruses and some specific mutant or recombinant variants of known viruses constantly appear. An example is a variant of coronaviruses (CoV) causing severe acute respiratory syndrome (SARS), named SARS-CoV-2. Some antiviral drugs, such as remdesivir as well as antiretroviral drugs including darunavir, lopinavir, and ritonavir are suggested to be effective in treating disorders caused by SARS-CoV-2. There are data on the utilization of antiretroviral drugs against SARS-CoV-2. Since there are many studies aimed at the identification of the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) infection and the development of novel therapeutic approaches against HIV-1, we used HIV-1 for our case study to identify possible molecular pathways shared by SARS-CoV-2 and HIV-1. We applied a text and data mining workflow and identified a list of 46 targets, which can be essential for the development of infections caused by SARS-CoV-2 and HIV-1. We show that SARS-CoV-2 and HIV-1 share some molecular pathways involved in inflammation, immune response, cell cycle regulation.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Data Mining/methods , HIV Infections/epidemiology , HIV Infections/metabolism , Host-Pathogen Interactions/immunology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Anti-Inflammatory Agents/therapeutic use , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Complement System Proteins/genetics , Complement System Proteins/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Databases, Genetic , Gene Expression Regulation , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/drug effects , HIV-1/immunology , HIV-1/pathogenicity , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Inflammation , Interferons/genetics , Interferons/immunology , Interleukins/genetics , Interleukins/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Repressor Proteins/genetics , Repressor Proteins/immunology , SARS-CoV-2 , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
14.
Mol Cells ; 44(6): 384-391, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1259762

ABSTRACT

The recent appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people around the world and caused a global pandemic of coronavirus disease 2019 (COVID-19). It has been suggested that uncontrolled, exaggerated inflammation contributes to the adverse outcomes of COVID-19. In this review, we summarize our current understanding of the innate immune response elicited by SARS-CoV-2 infection and the hyperinflammation that contributes to disease severity and death. We also discuss the immunological determinants behind COVID-19 severity and propose a rationale for the underlying mechanisms.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Host-Pathogen Interactions/immunology , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/immunology , Anti-Inflammatory Agents/therapeutic use , COVID-19/mortality , COVID-19/virology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Dexamethasone/therapeutic use , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate/drug effects , Inflammation , Interferon Type I/genetics , Interferon Type I/immunology , Interleukins/genetics , Interleukins/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/mortality , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index , Signal Transduction , Survival Analysis , COVID-19 Drug Treatment
15.
Molecules ; 25(11)2020 Jun 11.
Article in English | MEDLINE | ID: covidwho-981163

ABSTRACT

Flavonoids are widely used as phytomedicines. Here, we report on flavonoid phytomedicines with potential for development into prophylactics or therapeutics against coronavirus disease 2019 (COVID-19). These flavonoid-based phytomedicines include: caflanone, Equivir, hesperetin, myricetin, and Linebacker. Our in silico studies show that these flavonoid-based molecules can bind with high affinity to the spike protein, helicase, and protease sites on the ACE2 receptor used by the severe acute respiratory syndrome coronavirus 2 to infect cells and cause COVID-19. Meanwhile, in vitro studies show potential of caflanone to inhibit virus entry factors including, ABL-2, cathepsin L, cytokines (IL-1ß, IL-6, IL-8, Mip-1α, TNF-α), and PI4Kiiiß as well as AXL-2, which facilitates mother-to-fetus transmission of coronavirus. The potential for the use of smart drug delivery technologies like nanoparticle drones loaded with these phytomedicines to overcome bioavailability limitations and improve therapeutic efficacy are discussed.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus OC43, Human/drug effects , Flavonoids/pharmacology , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/chemistry , Betacoronavirus/chemistry , Betacoronavirus/growth & development , Binding Sites , COVID-19 , Chloroquine/chemistry , Chloroquine/pharmacology , Coronavirus Infections/genetics , Coronavirus OC43, Human/chemistry , Coronavirus OC43, Human/growth & development , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Flavonoids/chemistry , Humans , Interleukins/antagonists & inhibitors , Interleukins/chemistry , Interleukins/genetics , Interleukins/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Lung/drug effects , Lung/pathology , Lung/virology , Mice , Molecular Docking Simulation , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phytotherapy/methods , Pneumonia, Viral/genetics , Primary Cell Culture , Protein Binding , Protein Interaction Domains and Motifs , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Virus Internalization/drug effects
16.
Vaccine ; 38(48): 7581-7584, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-845859

ABSTRACT

Today, Coronavirus Disease 2019 (COVID-19) is a global public health emergency and vaccination measures to counter its diffusion are deemed necessary. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of the disease, unleashes a T-helper 2 immune response in those patients requiring intensive care. Here, we illustrate the immunological mechanism to train the immune system towards a more effective and less symptomatic T-helper 1 immune response, to be exploited against SARS-CoV-2.


Subject(s)
BCG Vaccine/administration & dosage , Bacterial Vaccines/administration & dosage , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Immunity, Innate/drug effects , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Propionibacteriaceae/immunology , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Corynebacterium , Humans , Immunization Schedule , Immunogenicity, Vaccine , Interleukins/genetics , Interleukins/immunology , Patient Safety , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/virology , Th1-Th2 Balance/drug effects , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/virology , Vaccination , Viral Vaccines/administration & dosage , Viral Vaccines/biosynthesis
17.
Adv Biol Regul ; 77: 100737, 2020 08.
Article in English | MEDLINE | ID: covidwho-597242

ABSTRACT

Natural killer (NK) cells are pivotal effectors of the innate immunity protecting an individual from microbes. They are the first line of defense against invading viruses, given their substantial ability to directly target infected cells without the need for specific antigen presentation. By establishing cellular networks with a variety of cell types such as dendritic cells, NK cells can also amplify and modulate antiviral adaptive immune responses. In this review, we will examine the role of NK cells in SARS-COV2 infections causing the ongoing COVID19 pandemic, keeping in mind the controversial role of NK cells specifically in viral respiratory infections and in inflammatory-driven lung damage. We discuss lessons learnt from previous coronavirus outbreaks in humans (caused by SARS-CoV-1 and MERS-COV).


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Host-Pathogen Interactions/immunology , Killer Cells, Natural/immunology , Pandemics , Pneumonia, Viral/epidemiology , Respiratory Insufficiency/epidemiology , Acute Disease , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Gene Expression Regulation , Immunity, Innate , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukins/genetics , Interleukins/immunology , Killer Cells, Natural/pathology , Killer Cells, Natural/virology , Lung/immunology , Lung/pathology , Lung/virology , Lymphocyte Activation , Lysosomal-Associated Membrane Protein 1/genetics , Lysosomal-Associated Membrane Protein 1/immunology , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Respiratory Insufficiency/complications , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/immunology , SARS-CoV-2 , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL